Китайская народная медицина

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Уборка   квартир в Москве

Уборка квартир в Москве

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Заказ контрольной работы

Заказ контрольной работы

Интернет-магазин Olympus

Интернет-магазин Olympus

 

Туризм, путешествия: Бронирование отелей

Туризм, путешествия: Бронирование отелей

KupiVip – крупнейший онлайн-магазин

Гироскутер SmartWay

ТехносилаТехносила

Подарки

Онлайн-гипермаркет лучших товаров для детей

Заказать курсовую работу - Пишут преподаватели!
Лабораторные работы по оптоэлектронике Исследование основных параметров полупроводникового лазера Полупроводниковые детекторы оптического излучения Волоконно-оптический световод Электронно-дырочный переход https://hotelopiniones.es/reviews/36506-hotel-apartamentos-vistasol-spa/

Определение напряжения пробоя Uпр. При большом обратном смещении на p–n-переходе, которое создает в нем большое электрическое поле, переход «пробивается» и через него протекает большой ток. Существует три основных механизма пробоя: тепловая неустойчивость, туннельный эффект и лавинное умножение.

Тепловой пробой является основным фактором в полупроводниках с относительно малой шириной запрещенной зоны Eg, например в германии. Однако при очень низких температурах, а также при специальных мерах по ограничению тока, протекающего через p–n-переход (включение токоограничивающего резистора) или по теплоотводу (установка радиаторов охлаждения), тепловая неустойчивость становится несущественной по сравнению с другими механизмами пробоя.

Когда электрическое поле в германии или кремнии достигает величин порядка 106 В/см, через p–n-переход начинают протекать токи, обусловленные туннельными переходами носителей заряда между разрешенными зонами полупроводников.

Чтобы получить такое сильное поле, толщина области пространственного заряда должна быть небольшой, следовательно, концентрации примеси в p- и n- областях должны быть достаточно высокими.

Установлено, что механизм пробоя в кремниевых и германиевых p–n-переходах является туннельным при напряжениях пробоя, меньших 4Eg/q. В переходах с напряжением пробоя, превышающим 6Eg/q, механизм пробоя обусловлен лавинным умножением.

Лавинное умножение, или ударная ионизация, является наиболее важным механизмом пробоя p–n-перехода. Напряжение лавинного пробоя определяет верхний предел обратного напряжения большинства диодов, коллекторного напряжения биполярных транзисторов, напряжения стока полевых транзисторов.

Напряжение лавинного пробоя p–n-перехода можно определить, зная величины максимального электрического поля и ширины области пространственного заряда.

Величина максимального значения напряженности электрического поля в p–n-переходе, сформированном на кремнии, определяется выражением

 , (1.34)

где N – концентрация примеси в высокоомной области p–n-перехода измеряется в см-3.

Если ширина области пространственного заряда p–n-перехода (W) известна, то напряжение пробоя для резкого несимметричного перехода

, (1.35)

а для плавного перехода

. (1.36)

Оценка величины напряжения пробоя резкого p-n-перехода может быть сделана на основании универсального приближенного выражения, справедливого для различных полупроводников:

 [В]. (1.37)

Для плавного перехода величину напряжения пробоя можно оценить, используя соотношение

 [В]. (1.38)

В выражениях (1.35) – (1.38) размерность величины а в см-4, а значение ширины запрещенной зоны полупроводника Eg при комнатной температуре в эВ.

Для p–n-перехода, полученного диффузионным методом, с линейным распределением примеси на одной стороне и с постоянной концентрацией примеси на другой стороне перехода напряжение пробоя принимает промежуточное значение между напряжением пробоя резкого и линейного переходов.

Для низких значений N напряжение пробоя диффузионного перехода приближается к напряжениям для резкого перехода; для высоких N напряжение близко к напряжениям для линейного перехода.

Выражения (1.34 – 1.38) получены в предположении достаточно большой толщины области пространственного заряда, чтобы существовали условия, необходимые для реализации процесса лавинного умножения носителей заряда.

Порядок построения энергетической диаграм-мы p-n-перехода. Для построения энергетической диаграммы несимметричного электронно-дырочного перехода при заданном напряжении смещения U необходимо определить следующие электрофизические характеристики:

концентрации примесей в высокоомной и низкоомной областях p–n-перехода;

величины объемных потенциалов (φобn, φобp), позволяющие определить положения уровней Ферми в р- и n -областях p–n-перехода, используя формулы (1.5 а), (1.5 б) и, полагая, что концентрации основных носителей заряда в n- и р- областях равны концентрациям донорных и акцепторных примесей (атомы примеси полностью ионизированы), т.е. nn » ND и pp » NA;

величину ширины области пространственного заряда соответствующего p–n-перехода, используя формулы (1.31), (1.33).

По полученным и исходным данным строится энергетическая диаграмма в следующей последовательности.

1. Выбирается масштаб – по вертикали в эВ, по горизонтали в мкм или в нм. Напомним, что электрон-вольт – это энергия, которую приобретает электрон, пройдя разность потенциалов 1 В. Связь этой единицы с джоулями следующая: 1 эВ = 1,6·10-19 Дж. Энергия, выраженная в электрон-вольтах, численно совпадает с соответствующей разностью потенциалов.

2. Проводится (произвольно) горизонтальная линия – линия уровня Ферми в высокоомной области p–n-перехода, обозначается Efn или Efр.

3. На расстоянии, равном величине рассчитанного объемного потенциала, выше (в случае, если область р-типа) или ниже (в случае, если область n -типа) уровня Ферми прочерчивается горизонтальная линия, соответствующая уровню середины запрещенной зоны, обозначается Ei.

4. Параллельно линии Ei на расстояниях, равных половине величины запрещенной зоны полупроводника Eg/2, проводятся горизонтальные линии:

- выше Ei – линия уровня дна зоны проводимости, обозначаемая Ec,

- ниже Ei – линия уровня потолка валентной зоны, обозначаемая Ev.

5. Проводятся вертикальные пунктирные линии, обозначающие границы области пространственного заряда р–n-перехода, расстояние между ними равно рассчитанному значению ширины р–n-перехода.

6. Проводится горизонтальная линия, соответствующая уровню Ферми в низкоомной области, таким образом, чтобы она отличалась от линии уровня Ферми в высокоомной области на величину приложенного напряжения смещения U, обозначается Efр или Efn.

7. Прочерчиваются линии, соответствующие середине запрещенной зоны, дну зоны проводимости и потолку валентной зоны в низкоомной области р–n-перехода способами, описанными в п. 3 и 4, обозначаются Ei, Ec и Ev.

8. Одинаково обозначенные линии, а также линии уровней Ферми в р- и n- областях соединяются друг с другом соответствующими отрезками прямой линии.